

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0470 vom 16. Juli 2021

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

CELO Betonschraube BTS

Mechanische Dübel zur Verwendung im Beton

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Werk 16

22 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601, Edition 10/2016

ETA-16/0470 vom 6. Oktober 2016

Z46548.21

8.06.01-30/21

Europäische Technische Bewertung ETA-16/0470

Seite 2 von 22 | 16. Juli 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-16/0470

Seite 3 von 22 | 16. Juli 2021

Besonderer Teil

1 Technische Beschreibung des Produkts

Die CELO Betonschraube BTS ist ein Dübel in den Größen 6, 8, 10, 12 und 14 mm aus galvanisch verzinktem bzw. zinklamellenbeschichtetem Stahl, aus nichtrostendem oder hochkorrosionsbeständigem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 und C 2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 und C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 7
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorien C1 und C2	Siehe Anhang C 3, C 4, C 5 und C 8
Dauerhaftigkeit	Siehe Anhang B 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 6

Europäische Technische Bewertung ETA-16/0470

Seite 4 von 22 | 16. Juli 2021

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

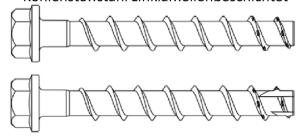
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

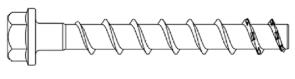
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

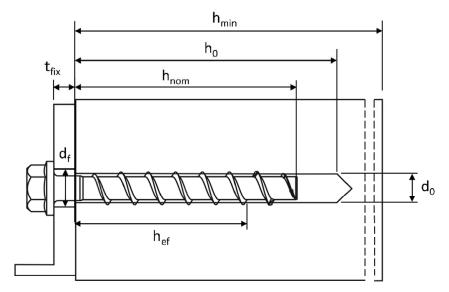
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 16. Juli 2021 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Produkt und Einbauzustand

CELO Betonschraube BTS

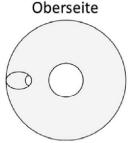

- Kohlenstoffstahl galvanisch verzinkt
- Kohlenstoffstahl zinklamellenbeschichtet

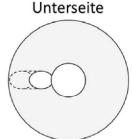
- nichtrostender Stahl A4
- korrosionsbeständiger Stahl HCR

z.B. CELO Betonschraube zinklamellenbeschichtet, Ausführung mit Sechskantkopf und Anbauteil

d₀ = Nomineller Bohrlochdurchmesser

t_{fix} = Dicke des Anbauteils


d_f = Durchgangsloch im anzuschließenden Anbauteil h_{min} = Mindestbauteildicke


h_{nom} = Nominelle Einschraubtiefe

h₀ = Bohrlochtiefe

h_{ef} = Effektive Verankerungstiefe

Verfüllscheibe (optional) zur Verfüllung des Ringspaltes

CELO Betonschrauben BTS

Produktbeschreibung
Produkt und Einbauzustand

Anhang A1

		Ausführung mit metrischem Anschlu Innensechskant z.B. BTS 8x105 M10	-					
	0	Ausführung mit metrischem Anschlo Sechskantantrieb z.B. BTS 8x105 M1						
	TSAP OOV S	Ausführung mit Sechskantkopf, ange Unterlegscheibe z.B. BTS B 8x80 SW						
	(SA)	Ausführung mit Sechskantkopf, ange Unterlegscheibe und TORX z.B. BTS						
	OCT AND BC OLD	Ausführung mit Sechskantkopf und z.B. BTS M 14x130 SW24	Bund					
	(54) (0) (0)	Ausführung mit Sechskantkopf, z.B. BTS K 8x80 SW13						
	(\$44 00/00	Ausführung mit Senkkopf und TORX z.B. BTS ST 8x80 TX40						
	(TSA) (O)	Ausführung mit Linsenkopf und TOR z.B. BTS PT 8x80 TX 40	XX					
	(SM)	Ausführung mit großem Linsenkopf z.B. BTS PTL 8x80 TX40	und TORX					
		Ausführung mit Senkkopf und Anschz.B. BTS E 6x55 M8	nlussgewinde					
		Ausführung mit Sechskantantrieb un Anschlussgewinde z.B. BTS E 6x55 N						
		Ausführung mit Innengewinde und Sechskantantrieb z.B. BTS H 6x55 M8/10						
CELO Betonschra	auben BTS							
Produktbeschi Ausführungen	Produktbeschreibung							

T - I I	11 -	1 1	A /	.1	- CC -
Tabe	IIe.	\mathbf{L} :	vver	KST	orre

Teil	Bezeichnung	Werkstoff								
Alle Ausführungen	CELO BTS	- Stahl EN 10263-4:2017 galvanisch verzinkt nach EN ISO 4042:201 - zinklamellenbeschichtet nach EN ISO 10683:2018 (≥5μm) - zinklamellenbeschichtet nach EN ISO 10683:2018 Spezialbeschichtung KORR (≥20μm)								
	CELO BTS A4	1.4401; 1.4404; 1.4571; 1.4578								
	CELO BTS HCR	1.4529								
Teil	Bezeichnung	nominelle ch Streckgrenze f _{yk} [N/mm²]	arakteristische Zugfestigkeit f _{uk} [N/mm²]	Bruchdehnung A₅ [%]						
Alle Ausführungen	CELO BTS CELO BTS A4 CELO BTS HCR	560	700	≤ 8						

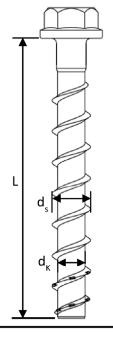
Tabelle 2: Abmessungen

Schraubengröße			(5	8		10		12			14				
Nominelle		h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Einschraubtiefe		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Schraubenlänge	≤L	[mm]		500												
Kerndurchmesser	d _K	[mm]	5,1 7,1			9,1		11,1		13,1						
Gewindeaußen- durchmesser	d _s	[mm]	7.	,5		10,6			12,6		14,6			16,6		
Dicke der Verfüllscheibe	t _v	[mm]		-		5		5		5			5			

Prägung:

BTS
Schraubentyp: BTS
Schraubendurchmesser: 10
Schraubenlänge: 100

Schraubentyp: BTS
Schraubendurchmesser: 10
Schraubenlänge: 100
Werkstoff: A4


BTS M

Schraubentyp: BTS M Schraubendurchmesser: 14 Schraubenlänge: 130

BTS HCR

Schraubentyp: BTS
Schraubendurchmesser: 10
Schraubenlänge: 100
Werkstoff: HCR

CELO Betonschraube BTS

Produktbeschreibung

Werkstoffe, Abmessungen und Prägungen

Anhang A3

Z46563.21

Spezifizierung des Verwendungszwecks

Tabelle 3: Beanspruchung der Verankerung

Schraubengröße 6			5	8			10			12		14			
		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominelle Einschraubtiefe Statische und guasi-statische	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Statische und quasi-statische	Lasten	ten Alle Größen und alle Einschraubtiefen													
Brandbeanspruchung					А	lie Gro	oisen t	ınd alı	ie Eins	scnrau	buere	en			
C1 – Seismische Beanspruch	ung	ok	ok				ok								
C2 – Seismische Beansprucht (A4 und HCR: keine Leistung festgestellt)	ıng	1)		1	.)	ok	1)	1)	ok	1	.)	ok	1	.)	ok

¹⁾ Keine Leistung bewertet

Verankerungsgrund:

- Verdichteter bewehrter und unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013
- gerissener und ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: Alle Schraubentypen
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen: Schrauben aus Edelstahl mit der Prägung A4
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen: Schrauben aus korrosionsbeständigem Stahl mit der Prägung HCR

Anmerkung: Besonders aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas- Entschwefelungsanlage oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

CELO Betonschraube BTS	
Verwendungszweck Spezifikation	Anhang B1

Spezifizierung des Verwendungszwecks - Fortsetzung

Bemessung:

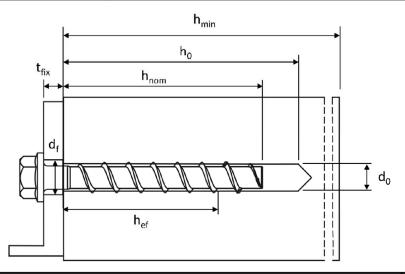
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, usw.) anzugeben.
- Die Bemessung der Verankerung erfolgt gemäß EN 1992-4:2018 und EOTA Technical Report TR 055.

Die Bemessung von Verankerungen unter Querlast in Übereinstimmung mit EN 1992-4:2018, Abschnitt 6.2.2. gilt für alle in Anhang B3, Tabelle 4 angegebenen Durchgangslochdurchmesser d_f im Anbauteil.

Einbau:

- in hammergebohrte oder hohlgebohrte (sauggebohrte) Löcher.
- der Verankerung durch entsprechend geschultes Personal und unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder geringerem Abstand, wenn die Fehlbohrung mit hochfesten Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Nach der Montage ist ein leichtes Weiterdrehen des Dübels nicht möglich. Der Dübelkopf muss am Anbauteil anliegen und darf nicht beschädigt sein.
- Das Bohrloch darf mit Injektionsmörtel CF-T 300V oder ATA 2004C verfüllt werden.
- Adjustierung nach Anhang B6: für Größen 6-14, alle Verankerungstiefen, aber nicht für seismische Anwendungen.
- Bohrlochreinigung ist nicht notwendig, wenn ein Hohlbohrer (Saugbohrer) verwendet wird.

CELO Betonschraube BTS


Verwendungszweck
Spezifikation - Fortsetzung

Anhang B2

BTS Betonschraubengröße		6		8			10				
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Norminelle Emschladbliele		[mm]	40	55	45	55	65	55	75	85	
Nomineller Bohrlochdurchmesser	d ₀	[mm]	n] 6 8			10					
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,4	40	8,45			10,45			
Bohrlochtiefe	h ₀ ≥	[mm]	45	60	55	65	75	65	85	95	
Durchgangsloch im anzuschließenden Anbauteil	d _f ≤	[mm]	8	8 12			14				
Installationsmoment für Version Anschlussgewinde	T _{inst}	[Nm]	10			20			40		
Tangantialsablagsabraubar		[NIma]	Max	. Nenno	drehmo	ment ge	emäß de	er Herst	ellerang	gabe	
Tangentialschlagschrauber		[Nm]	16	50	300			400			

BTS Betonschraubengröße	BTS Betonschraubengröße					14				
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
		[mm]	65	85	100	75	100	115		
Nomineller Bohrlochdurchmesser	d ₀	d ₀ [mm] 12				14				
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]		12,50			14,50			
Bohrlochtiefe	h ₀ ≥	[mm]	75	95	110	85	110	125		
Durchgangsloch im anzuschließenden Anbauteil	d _f ≤	[mm]	16 18							
Installationsmoment für Version Anschlussgewinde	T _{inst}	[Nm]	60 80							
Tangentialschlagschrauber		[Mm]	Max. Nenndrehmoment gemäß der Herstellerangabe							
Tangenuaischlagschrauber		[Nm]		650			650			

CELO Betonschraube BTS

Verwendungszweck

Montageparameter

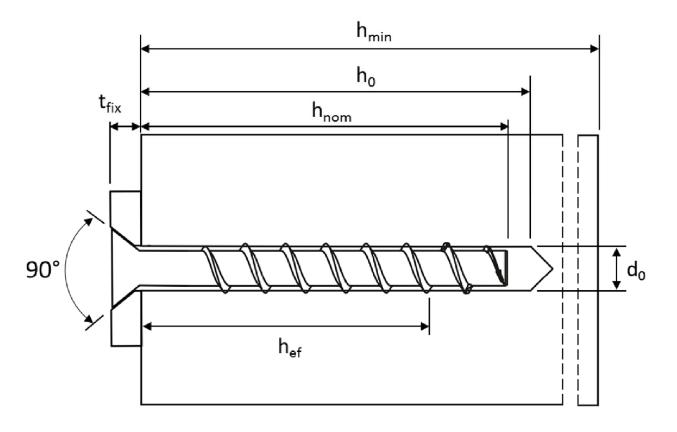
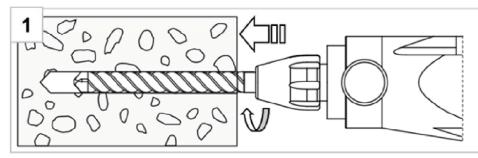
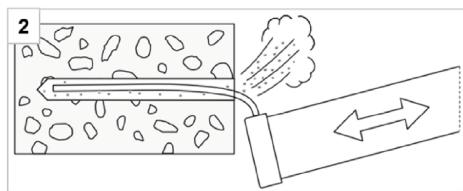
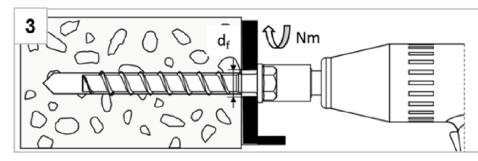

Anhang B3

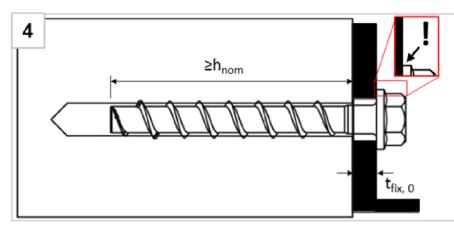
Tabelle 5: Minimale Bauteildicke, minimale Achs- und Randabstände

BTS Betonschraubengrö	(5		8		10				
Nominalla Finachraubtiafa		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Einschraubtiele	Nominelle Einschraubtiefe		40	55	45	45 55		55	75	85
Mindestbauteildicke	h _{min}	[mm]	10	00	100		0 120		00 130	
Minimaler Randabstand	C _{min}	[mm]	40		40 50		0		50	
Minimaler Achsabstand	S _{min}	[mm]	4	40		50		50		


BTS Betonschraubengrö		12		14					
Nominelle Einschraubtiefe h _{nom}			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Linschlaubtiele	[mm]	65 85		100	75	100	115		
Mindestbauteildicke	h _{min}	[mm]	120 130		150	130	150	170	
Minimaler Randabstand	C _{min}	[mm]	5	0	70	50	70		
Minimaler Achsabstand	S _{min}	[mm]	5	0	70	50	70		


CELO Betonschraube BTS	
Verwendungszweck Minimaler Bauteildicke, minimale Achs- und Randabstände	Anhang B4




Bohrloch mit Hammerbohrer oder Hohlbohrer herstellen

Bohrlochreinigung durch ausblasen oder aussaugen

Einschrauben mit Schlagschrauber oder Ratsche

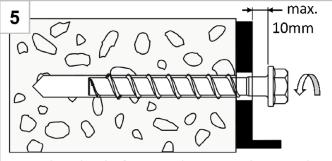
Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

Hinweis:

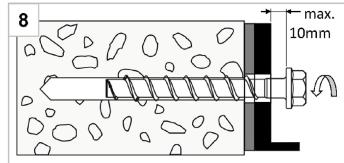
Bei Verwendung eines Hohlbohrers (Saugbohrers) ist eine Reinigung des Bohrlochs nicht notwendig.

CELO Betonschraube BTS

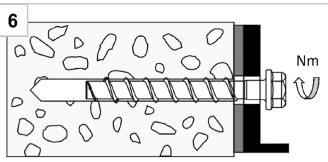
Verwendungszweck


Montageanleitung

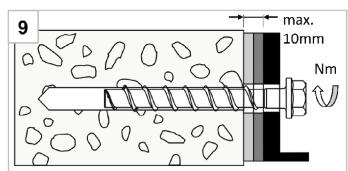
Anhang B5

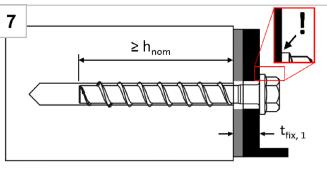

Montageanleitung - Adjustierung

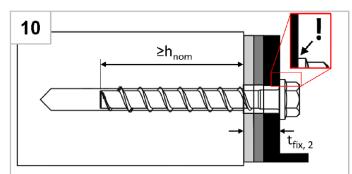
1. Adjustierung



Die Schraube darf maximal 10mm gelöst werden.


2. Adjustierung


Die Schraube darf maximal 10mm gelöst werden.


Nach Adjustierung muss die Schraube mit Schlagschrauber oder Ratsche eingeschraubt werden.

Nach Adjustierung muss die Schraube mit Schlagschrauber oder Ratsche eingeschraubt werden

Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

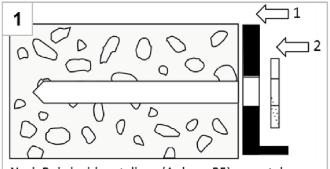
Hinweis:

Der Dübel darf maximal zweimal adjustiert werden. Dabei darf der Dübel jeweils maximal um 10mm zurückgeschraubt werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10mm betragen. Die erforderliche Setztiefe h_{nom} muss nach der Adjustierung noch eingehalten sein.

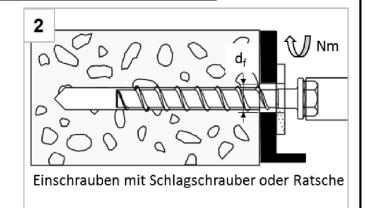
CELO Betonschraube BTS

Verwendungszweck

Montageanleitung - Adjustierung

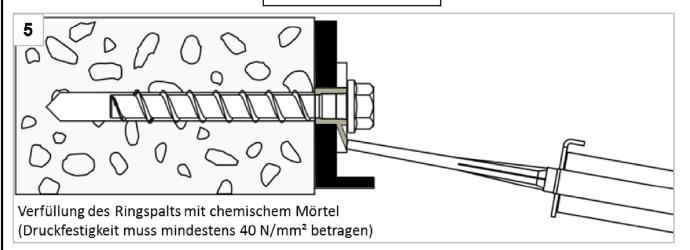

Anhang B6

Z46563.21




Montageanleitung - Ringspaltverfüllung

Positionierung der Verfüllscheibe und Anbauteil


Nach Bohrlochherstellung (Anhang B5), zuerst das Anbauteil (1), dann die Verfüllscheibe (2) positionieren

Ringspaltverfüllung

Hinweis:

Für seismische Auslegung ist die Anwendung mit Ringspaltverfüllung und ohne Ringspaltverfüllung zugelassen. Leistungsunterschiede können dem Anhang C5 - C7 entnommen werden.

Verwendungszweck

Montageanleitung - Ringspaltverfüllung

Anhang B7

Tabelle 6:	Leis	stung für sta	itische	und q	uasi-st	atische	e Belas	tung, (Größen	6-10		
BTS Beton	schi	raubengröße	!		(5		8			10	
Nominelle I	Fine	chrauhtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nommene				[mm]	40	55	45	55	65	55	75	85
Stahlversagen für Zug- und Querbeanspruchung												
Charakteris Widerstand	l bei	Zuglast	N _{Rk,s}	[kN]	14	1,0		27,0			45,0	
Teilsicherhe			γMs,N	[-]			I	1	,5 I		<u> </u>	
Charakteris Widerstand	l bei	Querlast	V ⁰ _{Rk,s}	[kN]	7	,0	13	3,5	17,0	22,5	34	,0
Teilsicherhe			γMs,V	[-]					25			
Faktor für D			k ₇	[-]			ı	0	,8	I		
Charakteris Biegemome		nes 	M ⁰ _{Rk,s}	[Nm]	10),9		26,0			56,0	
Herauszieł	nen		_									
Char.	.	gerissen	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾
Widerstand bei Zuglast C20/25		ungerissen	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0
Erhöhungs-	.	C25/30							12			
faktoren für C30/37		Ψς	[-]					22				
N _{Rk,p}	•	C40/50 C50/60							41 58			
Betonversa	agei	n und Spalte	n; Beto	nausbr	uch au	f der la	stabgev	wandte	n Seite	(Pryou	t)	
Effektive Ve	eran	kerungstiefe	h _{ef}	[mm]	31	44	35	43	52	43	60	68
k-Faktor	ge	rissen	k _{cr}	[-]	7,7							
K-Faktoi	ur	ngerissen	k _{ucr}	[-]				11	.,0			
Beton-	Ac	chsabstand	S _{cr,N}	[mm]				3 x	h _{ef}			
versagen	Ra	ndabstand	C _{cr,N}	[mm]				1,5	x h _{ef}			
	W	iderstand	N ⁰ _{Rk,sp}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0
Spalten	Ac	hsabstand	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210
	_	ndabstand	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105
Faktor für P	<u> </u>		k ₈	[-]			1,	,0			2,	,0
Montagebe	iwe	rt	γinst	[-]				1	,0			
Betonkant												
Effektive Lä		in Beton	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68
Nomineller Schraubend		hmesser	d _{nom}	[mm]		5		8			10	
1) N ⁰ _{Rk,c} ents	orec	hend EN 1992-	4:2018									
CELO) Be	etonschraub	e BTS									
	Leistungsmerkmale Charakteristische Tragfähigkeit für BTS 6, 8, 10								Anhang C1			

BTS Betons				quasi-st							
	cnraur	pengroise		Ι.		12			14	Ι.	
Nominelle E	inschra	ubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} :	
				[mm]	65	85	100	75	100	115	
Stahlversag	en für	Zug- und Qı	uerbeans	pruchun	g						
Charakterist bei Zuglast	ischer '	Widerstand	$N_{Rk,s}$	[kN]	67,0 94,0						
Teilsicherhei	tsbeiw	ert	γ _{Ms,N}	[-]			1,	.5			
Charakterist bei Querlast		Widerstand	V ⁰ _{Rk,s}	[kN]	33,5	42	.,0		56,0		
Teilsicherhei	tsbeiw	ert	γ _{Ms,V}	[-]			1,2	25			
Faktor für Dı		t	k ₇	[-]			0,	8			
Charakterist Biegemome			$M^0_{Rk,s}$	[Nm]		113,0			185,0		
Herauszieh	en										
Char. Widers		gerissen	$N_{Rk,p}$	[kN]	12,0	2,0					
bei Zuglast ii C20/25	Lunganiaaan			[kN]	16,0	≥ N ⁰ _{Rk,c} 1)					
C25/30							1,:				
Erhöhungs- C30/37		$\Psi_{_{ m c}}$	[-]			1,2					
faktoren für	I V Rk,p	C40/50 C50/60					1,4 1,5	41 58			
Betonversa	gen ur	nd Spalten; B	etonaus	bruch au	f der las	tabgewa	ndten S	eite (Pry	out)		
Effektive Ver	ankeru	ıngstiefe	h _{ef}	[mm]	50	0 67 80 58 79 92					
k-Faktor	geri	ssen	k _{cr}	[-]		7,7					
K-Faktoi		erissen	k _{ucr}	[-]			11	•			
Beton-		sabstand	S _{cr,N}	[mm]			3 x				
versagen	+	dabstand	C _{cr,N}	[mm]				x h _{ef}			
0 1:	-	erstand	N ⁰ Rk,sp	[kN]	16,0	27,0	35,0	21,5	34,5	43,5	
Spalten		sabstand	S _{cr,Sp}	[mm]	150	210	240	180	240	280	
- L. C. D		dabstand	C _{cr,Sp}	[mm]	75	105	120	90	120	140	
Faktor für Pryoutversagen k ₈				[-]	1,0	2,	,0	1,0	2,0		
N/antarahai:			γinst	[-]			1,	,0			
Montagebei	Betonkantenbruch			[mm]	I 50	67	90	го	70	02	
Betonkante) a train	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92	
Betonkante Effektive Lär		Beton		l	12 14						
	ige in E		d _{nom}	[mm]		12			14		
Betonkante Effektive Lär Nomineller Schraubendi	nge in E urchme			[mm]		12			14		
Betonkante Effektive Lär Nomineller Schraubendi	nge in E urchme	esser)18	[mm]		12			14		
Betonkante Effektive Lär Nomineller Schraubendi	urchmerechend	esser d EN 1992-4:20)18	[mm]		12			14 Anhan		

Tabelle 8: Leistung für seismische Leistungskategorie C1 (nur BTS B, BTS K, BTS ST, BTS,									
BTS E ¹⁾ , BTS PT/PTL und BTS	H ¹⁾)								
BTS Betonschraubengröße				6	8	1	0	12	14
Nominelle Einschraubtiefe	h	nom	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1} h _{nom3}		h _{no}	om3
	[m	nm]	40	55	65	55	85	100	115
Stahlversagen für Zug- und Querlast (Ausführung BTS B, BTS K, BTS ST, BTS, BTS E ¹⁾ , BTS PT/PTL, BTS H ¹⁾)									
Charakteristischer Widerstand bei Zuglast	N _{Rk,s,C1}	[kN]	14,0 27,0 45,0 67,0			94,0			
Teilsicherheitsbeiwert	γ _{Ms,C1}	[-]				1,	5		
Charakteristischer Widerstand bei Querlast	V _{Rk,s,C1}	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4
Teilsicherheitsbeiwert	γ _{Ms,C1}	[-]	1,25						
Mit verfüllten Ringspalt ²⁾	$\alpha_{\sf gap}$	[-]	1,0						
Ohne verfüllten Ringspalt 3)	α_{gap}	[-]	0,5						
Herausziehen (Ausführung BTS B,	BTS K, B	TS ST, B	TS, BTS	E ¹⁾ , BTS	PT/PTL,	BTS H ¹⁾			

Charakteristischer Widerstand bei Zuglast in gerissenem Beton C20/25	N _{Rk,p,C1}	[kN]	2,0	4,0	12,0	9,0	≥ N ⁰ _{Rk,c} ⁴⁾				
Betonversagen (Ausführung BTS B, BTS K, BTS ST, BTS, BTS E ¹⁾ , BTS PT/PTL, BTS H ¹⁾)											
Effektive Verankerungstiefe	h _{ef}	[mm]	31	44	52	43	68	80	92		
Randabstand	C _{cr,N}	[mm]	1,5 x h _{ef}								
Achsabstand	S _{cr,N}	[mm]	3 x h _{ef}								
Montagebeiwert	γ_{inst}	[-]				1,	0				

Betonausbruch auf der lastabgewandten Seite (Ausführung BTS B, BTS K, BTS ST, BTS, BTS PT/PTL)											
Faktor für Pryoutversagen	k ₈	[-]		1	,0		2,0				
Betonkantenbruch (Ausführung BTS B, BTS K, BTS ST, BTS, BTS PT/PTL)											
Effektive Länge im Beton	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92		

Detorikantenbruch (Austumung 613 6, 613 k, 613 31, 613 71/FTL)										
Effektive Länge im Beton	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92	
Nomineller Schraubendurchmesser	d_{nom}	[mm]	6	6	8	10	10	12	14	

¹⁾ Nur für Zugbeanspruchung

CELO Betonschraube BTS	
Leistungsmerkmale Seismische Leistungskategorie C1	Anhang C3

²⁾ Ringspaltverfüllung gemäß Anhang B7, Bild 5

³⁾ ohne Ringspaltverfüllung gemäß Anhang B5

 $^{^{4)}}$ N 0 _{Rk,c} entsprechend EN 1992-4:2018

Tabelle 9: Leistung für seismische Leistungskategorie C2 1) – Werte mit verfülltem
Ringspalt gemäß Anhang B7, Bild 5 (nur BTS B, BTS K, BTS, BTS PT/PTL)

Ringspalt gemäß Anhang B7, Bild 5 (nur BTS B, BTS K, BTS, BTS PT/PTL)									
BTS Betonschraubengröße			8	10	12	14			
Naminalla Finankauhtiafa		h _{nom}		h _{no}	om3				
Nominelle Einschraubtiefe		[mm]	65	85	100	115			
Stahlversagen für Zug- und Querlast (A	usführung	BTS B,	BTS K, BTS, BT	rs PT/PTL)					
Charakteristischer Widerstand bei Zuglast	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0			
Teilsicherheitsbeiwert	γ Ms,C2	[-]		1,	,5				
Charakteristischer Widerstand bei Querlast	$V_{Rk,s,C2}$	[kN]	9,9	18,5	31,6	40,7			
Teilsicherheitsbeiwert	γ Ms,C2	[-]	1,25						
Mit verfüllten Ringspalt	$lpha_{\sf gap}$	[-]	1,0						
Herausziehen (Ausführung BTS B, BTS	K, BTS, B	TS PT/P	TL)						
Charakteristischer Widerstand bei Zuglast in gerissenem Beton	N _{Rk,p,C2}	[kN]	2,4 5,4 7,1 10,5						
Betonversagen (Ausführung BTS B, B	TS K, BTS,	BTS PT/	PTL)						
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92			
Randabstand	C _{cr,N}	[mm]		1,5	x h _{ef}				
Achsabstand	S _{cr,N}	[mm]		3 x	h _{ef}				
Montagebeiwert	γinst	[-]		1	,0				
Betonausbruch auf der lastabgew	andten S	Seite (A	usführung BT :	S B, BTS K, BT	S, BTS PT/PTL	.)			
Faktor für Pryoutversagen	k ₈	[-]	1,0		2,0				
Betonkantenbruch (Ausführung BTS	B, BTS K,	BTS, BTS	S PT/PTL)						
Effektive Länge im Beton	l _f = h _{ef}	[mm]	52	68	80	92			
Nomineller Schraubendurchmesser	d_{nom}	[mm]	8	10	12	14			

¹⁾ gilt nicht für A4 und HCR

CELO Betonschraube BTS	
Leistungsmerkmale Seismische Leistungskategorie C2 – Werte mit verfüllten Ringspalt	Anhang C4

Tabelle 10: Leistung für seismische Leistungskategorie C2 ¹⁾ – Werte ohne verfüllten
Ringspalt gemäß Anhang B5 (nur BTS B, BTS K, BTS, BTS PT/PTL, BTS ST)

Ringspalt gemäß Anhang B5 (r	nur BTS B,	BTS K,	BTS, BTS F	PT/PTL, BTS	SST)				
BTS Betonschraubengröße			8	10	12	14			
Nominelle Einschraubtiefe		h _{nom}		hn	om3				
Nominelle Einschraubtiele		[mm]	65	85	100	115			
Stahlversagen für Zug- und Que	erlast (Ausfü	ihrung B	TS B, BTS K, B	TS, BTS PT/P	ΓL)				
Char. Widerstand bei Zuglast	$N_{Rk,s,C2}$	[kN]	27,0	45,0	67,0	94,0			
Teilsicherheitsbeiwert	γ _{Ms,C2}	[-]		1	,5				
Char. Widerstand bei Querlast	$V_{Rk,s,C2}$	[kN]	10,3	21,9	24,4	23,3			
Teilsicherheitsbeiwert	γ _{Ms,C2}	[-]		1,	25				
Ohne verfüllten Ringspalt	$lpha_{\sf gap}$	[-]		0	,5				
Herausziehen (Ausführung BTS B, I	BTS K, BTS, E	STS PT/P	TL)						
Char. Widerstand bei Zuglast in gerissenem Beton	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5			
Stahlversagen für Zug- und Que	rlast (Ausfü	ihrung B	TS ST)						
Char. Widerstand bei Zuglast	N _{Rk,s,C2}	[kN]	27,0	45,0					
Teilsicherheitsbeiwert	γMs,C2	[-]	1,	,5					
Char. Widerstand bei Querlast	$V_{Rk,s,C2}$	[kN]	3,6	13,7	keine Leistu	ng bewertet			
Teilsicherheitsbeiwert	γMs,C2	[-]	1,	25					
Ohne verfüllten Ringspalt	$\alpha_{\sf gap}$	[-]	0,	,5					
Herausziehen (Ausführung BTS ST)					-				
Char. Widerstand bei Zuglast in gerissenem Beton	N _{Rk,p,C2}	[kN]	2,4	5,4	keine Leistu	ng bewertet			
Betonversagen (Ausführung BTS B	, BTS K, BTS	ST, BTS,	BTS PT/PTL)						
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92			
Randabstand	C _{cr,N}	[mm]		1,5	x h _{ef}	•			
Achsabstand	S _{cr,N}	[mm]		3 x	h _{ef}				
Montagebeiwert	γinst	[-]	1,0						
Betonausbruch auf der lastabge	ewandten S	Seite (A	usführung BT S	S B, BTS K, BT	S ST, BTS, BTS	PT/PTL)			
Faktor für Pryoutversagen	k ₈	[-]	1,0	, , , , , , , , , , , ,	2,0	. ,			
Betonkantenbruch (Ausführung B	TS B, BTS K,	BTS ST,	BTS, BTS PT/P	PTL)					
Effektive Länge im Beton	I _f = h _{ef}	[mm]	52	68	80	92			
Nomineller Schraubendurchmesser	d _{nom}	[mm]	8	10	12	14			
1) gilt nicht für A4 und HCR	•		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				

¹⁾ gilt nicht für A4 und HCR

CELO Betonschraube BTS	
Leistungsmerkmale Seismische Leistungskategorie C2 – Werte ohne verfüllten Ringspalt	Anhang C5

BTS Betonschraubengröße				6		8		10		12		14					
Nominelle Eir	schrau	htiefe	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Norminene Lii	iscili au	Difere	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	11.
Stahlversage	n für Z	ug- und Qւ	ierlast	<u> </u>													
	R30	N _{Rk,s,fi30}	[kN]	_	,9		2,4			4,4			7,3			10,3	
	R60	N _{Rk,s,fi60}	[kN]	0	0,8		1,7			3,3			5,8			8,2	
	R90	N _{Rk,s,fi90}	[kN]	0	0,6		1,1			2,3			4,2			5,9	
	R120	N _{Rk,s,fi120}	[kN]	_	,4		0,7			1,7			3,4			4,8	
Charakterist-	R30	V _{Rk,s,fi30}	[kN]		,9		2,4			4,4			7,3			10,3	
charakterist- ischer	R60	V _{Rk,s,fi60}	[kN]	_	,8		1,7			3,3			5,8			8,2	
Widerstand	R90	V _{Rk,s,fi90}	[kN]	_	,6		1,1			2,3			4,2			5,9	
	R120	V _{Rk,s,fi120}	[kN]	_	,4		0,7			1,7			3,4			4,8	
	R30	M ⁰ Rk,s,fi30	[Nm]		0,7		2,4		5,9			12,3		20,4			
	R60	M ⁰ Rk,s,fi60	[Nm]	0,6			1,8			4,5		9,7		15,9			
	R90 M ⁰ _{Rk,s,fi90}		[Nm]	_	,5	1,2		3,0		7,0		11,6					
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0	,3		0,9			2,3			5,7		9,4		
Herausziehe	n																
Charakterist- ischer	R30- 90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
Widerstand	R120	N Rk,p,fi	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Betonversag	en																
Charakterist- ischer	R30- 90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
Widerstand	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Randabstand	<u></u>																
R30 bis R120	-	C _{cr,fi}	[mm]							2	x he	f					
Mehrseitiger	Beansp			er Ra	anda	bsta	nd ≥	300	mm								
Achsabstand																	
R30 bis R120		S _{cr,fi}	[mm]							4	x he	f					
Betonausbru	ıch auf	-		ıdte	n Se	ite											
R30 bis R120		k ₈	[-]				,0			2	,0	1,0	2	.,0	1,0	2	,0
Im nassen Bet	ton ist d			efe i	m Ve			nit d	em a			·		-			

CELO Betonschraube BTS	
Leistungsmerkmale Leistung unter Brandbeanspruchung	Anhang C6

BTS Betonsc	hraubengröße			6	5		8			10		
Nominelle Eir	a cabra ubti afa		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h_{nom1}	h _{nom2}	h _{nom}	
Nominelle Ell	ischraubtiele		[mm]	40	55	45	55	65	55	75	85	
	Zuglast	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Gerissener Beton	Verschiebung	δ_{NO}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
Deton	verschiebung	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
	Zuglast	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
Ungerissener Beton	Verschiebung	δ_{NO}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
Deton	verschiebung	δ_{N^∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
BTS Betonsc	hraubengröße			12					14	14		
Naminalla Eir	nschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{no}	om3	h _{nom1}	h _{nom} ;	<u> </u>	1 _{nom3}	
Nominelle Ell	ischraubtiele		[mm]	65	85		00	75	100		115	
Cariananan	Zuglast	N	[kN]	5,7	9,4	12	.,3	7,6	12,0	:	15,1	
Gerissener Beton	Verschiebung	δ_{NO}	[mm]	0,9	0,5	1,	.0	0,5	0,8		0,7	
Deton	verschiebung	$\delta_{N^{\infty}}$	[mm]	1,0	1,2	1,	.2	0,9	1,2		1,0	
	Zuglast	N	[kN]	7,6	13,2	17	',2	10,6	16,9		21,2	
Ungerissener Beton	Verschiebung	δ_{NO}	[mm]	1,0	1,1	1,	.2	0,9	1,2		0,8	
Deton	verschiebung	δ_{N^∞}	[mm]	1,0	1,2	1	.2	0,9	1,2		1,0	

Tabelle 13: Verschiebungen unter statischer und quasi-statischer Querbelastung

BTS Betonso	6	5	8			10					
Nominelle Einschraubtiefe				h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nommene Li	Northinelle Ellischlaubtiele			40	55	45	55	65	55	75	85
Gerissener	Querlast	٧	[kN]	3,	.3		8,6			16,2	
und		δ_{V_0}	[mm]	1,	55		2,7			2,7	
ungerissener Beton	Verschiebung	δν∞	[mm]	3,	.1	4,1			4,3		
BTS Betonso	hraubengröße				12			14			
Naminalla Ei	nschraubtiefe		h_{nom}	h _{nom1} h _{nom2}		h _{nc}	om3	h _{nom1}	h _{nom} ;	₂	n _{om3}
Nominelle Ell	nschraubtiele		[mm]	65			00	75	100		115
Gerissener	Querlast	>	[kN]		20,0)		30,5			
und					4,0			3,1			
ungerissener Beton	- - - - - - - - - -		[mm]		6,0 4,7						

CELO Betonschraube BTS	
Leistungsmerkmale Verschiebungen unter statischer und quasi-statischer Belastung	Anhang C7

Tabelle 14: Seismische Leistungskategorie C2 1) –	- Verschiebungen mit verfüllten Ringspalt
gemäß Anhang B7, Bild 5 (nur BTS B, BTS K, BTS,	BTS PT/PTL)

BTS Betonschraubengröße		8	10	12	14					
Nominelle Einschraubtiefe			h _{nom} h _{nom3}							
Norminelle Emschraubtiele		[mm]	65	85	100	115				
Verschiebungen unter Zugbelastung (Ausführung Typ B, BTS K, BTS, BTS PT/PTL)										
Verschiebung DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	0,66	0,32	0,57	1,16				
Verschiebung ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	1,74	1,36	2,36	4,39				
Verschiebungen unter Querbelastung (Ausführung Typ B, BTS K, BTS, BTS PT/PTL) mit Durchgangsloch)										
Verschiebung DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	1,68	2,91	1,88	2,42				
Verschiebung ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,19	6,72	5,37	9,27				

Tabelle 15: Seismische Leistungskategorie C2 ¹⁾ – Verschiebungen **ohne verfüllten Ringspalt gemäß Anhang B5** (nur BTS B, BTS K, BTS ST, BTS, BTS PT/PTL)

BTS Betonschraubengröße		8	10	12	14						
Nominelle Einschraubtiefe	h _{nom}		h _n	om3							
Norminene Emschlädbliefe	[mm]	65	85	100	115						
Verschiebungen unter Zugbelas	tung (Aust	führung	BTS B, BTS K,	BTS, BTS PT/	PTL)						
Verschiebung DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	0,66	0,32	0,57	1,16					
Verschiebung ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	1,74	1,36	2,36	4,39					
Verschiebungen unter Zugbelastung (Ausführung BTS ST)											
Verschiebung DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	0,66	0,32	keine Leistung bewertet						
Verschiebung ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	1,74	1,36							
Verschiebungen unter Querbela Durchgangsloch)	astung (Au	ısführun	g BTS B, BTS	K, BTS, BTS P1	r/PTL mit						
Verschiebung DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	4,21	4,71	4,42	5,60					
Verschiebung ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	7,13	8,83	6,95	12,63					
Verschiebungen unter Querbela	astung (Au	ısführun	g BTS ST mit (Durchgangslo	ch)						
Verschiebung DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,51	2,98	leging Laister						
Verschiebung ULS	δ _{V,C2(ULS)}	[mm]	7,76	6,25	keine Leistu	ng bewertet					

¹⁾ gilt nicht für A4 und HCR

CELO Betonschraube BTS	Anhang C8
Leistungsmerkmale Verschiebungen unter seismischer Beanspruchung	