

Abmessungen und Technische Daten

VS = Vorlauf Speicher IG Rp1 1/4

RS = Rücklauf Speicher IG Rp1 1/4

AW = Austritt Warmwasser AG R1

EK = Eintritt Kaltwasser AG R1

EL = Entleerung

EZ = Eintritt Zirkulation IG Rp3/4

M1 = Messstelle Solar - Tauchhülse Innen-Ø 16 mm

M2 = Messstelle - Tauchhülse Innen-Ø 16 mm (Temperaturfühler in M2)

Mg = Magnesiumanode

TH = Tauchhülse mit Thermometer für Temperaturanzeige

Die Maßangaben gelten für den Fall, dass die Stellfüße ganz eingedreht sind. Durch Drehen der Stellfüße können diese Maße um max. 40 mm erhöht werden.

	SH290 RS	SH370 RS	SH400 RS	
Speicherinhalt (I)	277	352	399	
Durchmesser Ø D (mm)	700	750	750	
Höhe H (mm)	1294	1591	1921	
Kippmaß (mm)	1475	1750	2050	
Aufstellraum Höhe 1) (mm)	1694	1991	2321	
Vorlauf Speicher H _{vs} (mm)	784	964	1415	
Rücklauf Speicher H _{RS} (mm)	220	220	220	
Eintritt Kaltwasser H _{EK} (mm)	55	55	55	
Eintritt Zirkulation H _{EZ} (mm)	544	665	1081	
Austritt Warmwasser H _{AW} (mm)	1226	1523	1811	
Heizwasserinhalt (I)	22	29	47,5	
Bereitschaftswärme-Aufwand 2) (kWh/24h)	1,82	1,51	1,78	
Gewicht netto (kg)	126	160	183	
Maximaler Betriebsdruck (bar)	10	10 Heizwasser/10 Warmwasser		
Maximale Betriebstemperatur (°C)	110	110 Heizwasser/95 Warmwasser		
Größe Wärmetauscher (m²)	3,2	4,2	7,0	
Leistungskennzahl ³⁾	13	15	25	
Dauerleistung (kW) 4)	8,8	13	20,9	
Dauerleistung (I/h) 4)	216	320	514	
Dauerleistung (kW) 5)	80	90	140	
Dauerleistung (I/h) 5)	1965	2210	3435	
Dauerleistung (kW) 6)	65	75	110	
Dauerleistung (I/h) 6)	1510	1288	1890	
EU-Richtlinie für Energieeffizienz				
Energieeffizienzklasse	В	В	В	
Energieeffizienzklassen-Spektrum		A+ -> F		
Warmhalteverlust (W)	76,0	63,0	74,0	
Speichervolumen (I)	277,0	352,0	399,0	

¹⁾ Mindestraumhöhe für Austausch der Magnesium-Anode

⁶⁾ Bei $t_V = 80 \,^{\circ}\text{C}$, $10/60 \,^{\circ}\text{C}$

 $^{^{\}rm 2)}$ Messwert bei 45 K Temperaturdifferenz nach EN 12897

 $^{^{3)}}$ Nach DIN 4708 bei Erwärmung auf $\rm t_{sp} = 60^{\circ}C$ und $\rm t_{V} = 80^{\circ}C$

⁴⁾ Bei $t_V = 60$ °C, 10/45 °C

⁵⁾ Bei $t_v = 80 \,^{\circ}\text{C}$, $10/45 \,^{\circ}\text{C}$